Sparse Approximate Solution of Partial Differential Equations∗
نویسندگان
چکیده
A new concept is introduced for the adaptive finite element discretization of partial differential equations that have a sparsely representable solution. Motivated by recent work on compressed sensing, a recursive mesh refinement procedure is presented that uses linear programming to find a good approximation to the sparse solution on a given refinement level. Then only those parts of the mesh are refined that belong to nonzero expansion coefficients. Error estimates for this procedure are refined and the behavior of the procedure is demonstrated via some simple elliptic model problems.
منابع مشابه
On the convergence of the homotopy analysis method to solve the system of partial differential equations
One of the efficient and powerful schemes to solve linear and nonlinear equations is homotopy analysis method (HAM). In this work, we obtain the approximate solution of a system of partial differential equations (PDEs) by means of HAM. For this purpose, we develop the concept of HAM for a system of PDEs as a matrix form. Then, we prove the convergence theorem and apply the proposed method to fi...
متن کاملNumerical Methods for Fuzzy Linear Partial Differential Equations under new Definition for Derivative
In this paper difference methods to solve "fuzzy partial differential equations" (FPDE) such as fuzzy hyperbolic and fuzzy parabolic equations are considered. The existence of the solution and stability of the method are examined in detail. Finally examples are presented to show that the Hausdorff distance between the exact solution and approximate solution tends to zero.
متن کاملAPPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کاملa New Approximate Solution Technique (Quantized Method) for Simultaneous Gas Solid Reactions
Simultaneous reactions between solids and gases are very important in the chemical and metallurgical processes. In the modeling, the chemical reaction and diffusion of gases must be considered. Therefore, a set of coupled partial differential equations is found. When the kinetic is a function of solid concentration, there is not any analytical solution for these equations. Therefore, numerical ...
متن کاملFinite difference method for solving partial integro-differential equations
In this paper, we have introduced a new method for solving a class of the partial integro-differential equation with the singular kernel by using the finite difference method. First, we employing an algorithm for solving the problem based on the Crank-Nicholson scheme with given conditions. Furthermore, we discrete the singular integral for solving of the problem. Also, the numerical results ob...
متن کاملApproximate Solution of Fuzzy Fractional Differential Equations
In this paper we propose a method for computing approximations of solution of fuzzy fractional differential equations using fuzzy variational iteration method. Defining a fuzzy fractional derivative, we verify the utility of the method through two illustrative examples.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009